Using genetic algorithm based knowledge refinement model for dividend policy forecasting

نویسندگان

  • Chaehwan Won
  • Jinhwa Kim
  • Jae Kwon Bae
چکیده

Dividend policy is one of most important managerial decisions affecting the firm value. Although there are many studies regarding decision-making problems, such as credit policy decisions through bankruptcy prediction and credit scoring, there is no research, to our knowledge, about dividend prediction or dividend policy forecasting using machine learning approaches in spite of the significance of dividends. For dealing with the problems involved in literature, we suggest a knowledge refinement model that can refine the multiple rules extracted through rule-based algorithms from dividend data sets by utilizing genetic algorithm (GA). The new technique, called ‘‘GAKR (genetic algorithm knowledge refinement)’’, aims to combine the advantages of both knowledge consolidation and GA. The main result of the cross-validation procedure is the average accuracy rate of prediction in the five sets over the five iterations. The experiments show that GAKR model always outperforms other models in the performance of dividend policy prediction; we can predict future dividend policy more correctly than any other models. The major advantages of GAKR model can be summarized as follows: (1) Classification process of GAKR can be very fast with a compact set of rules. In other words, fast training mechanism of GAKR is possible regardless of data set sizes. (2) Multiple rules extracted by GAKR development process are much simpler and easier to understand. Moreover, GAKR model can discriminate redundant rules and inconsistent rules. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Decisions on Dividend Policy of South Korea Companies Listed in the Korea Exchange Market Based on Support Vector Machines

In this study, performance of classification techniques is compared in order to predict dividend policy decisions. We first analyzed the feasibility of all available companies listed in the Korea Exchange (KRX) market as dividend data sets by using classification techniques. Then we developed a prediction model based on support vector machines (SVM). We compare the classification accuracy perfo...

متن کامل

Forecasting GDP Growth Using ANN Model with Genetic Algorithm

Applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. Artificial Neural Networks (ANN) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. Most ANN models applied in Economics use the gradient descent method as their learning algorithm. However, t...

متن کامل

An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market

Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...

متن کامل

Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm

Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012